
Design of Control System for Lower Limb Rehabilitation 
Robot on the Healthy Side sEMG Signal  

 

Shiqin Yu1, Jian Guo1,2* Shuxiang Guo1,2,3* and Qiang Fu1 

1 Tianjin Key Laboratory for Control 
Theory & Applications  

in Complicated Systems and Intelligent 
Robot Laboratory     

 Tianjin University of Technology  
Binshui Xidao Extension  

391, Tianjin, 300384,China  
1309917664@qq.com; 

*Corresponding author: 
 jianguo@tjut.edu.cn；                                                                                  

2Shenzhen Institute of Advanced 
Biomedical Robot Co.,Ltd. 

No.12, Ganli Sixth Road, Jihua  
Street, Longgang District, 
Shenzhen,518100,China 
*Corresponding author: 

guoshuxiang@hotmail.com 

3 Key Laboratory of Convergence 
Medical Engineering System and 

Healthcare Technology,The Ministry of 
Industry and Information 

Technology,School of Life Science 
Beijing Institute of Technology 

No.5,Zhongguancun South 
Street,Beijing,100081,China 
fuqiang6369@hotmail.com; 

 Abstract - With the number of stroke patients increasing 
year by year, rehabilitation exoskeleton robot has been paid 
more and more attention. For the rehabilitation exoskeleton 
robot, human-computer interaction ability is an important index, 
which affects the effect of rehabilitation therapy to a great extent. 
Surface Electromyography (sEMG) signals are the combined 
effect of sEMG signals and electrical activities on nerve stem on 
the skin surface, which can reflect neuromuscular activities in 
advance and can be used to predict movement intention by 
sEMG signals. Therefore, this article proposes to use sEMG 
signals to monitor the motion information of the healthy leg in 
real-time, extract the characteristics of the electromyography 
signals, use the sEMG of the healthy leg as the control signal, 
reflect the motion patterns reflected by the sEMG collected from 
the healthy side, and then use the motion intention recognition 
method of Long Short Term Memory(LSTM) neural network to 
identify the motion intention of the prosthetic limb by identifying 
the motion patterns of the swing phase of the healthy side. The 
results indicate that the predicted maximum Root Mean Squared 
Error(RMSE) is 5.3729, which proves the feasibility of using 
LSTM model for motion intention recognition and contributes to 
the real-time and accuracy of lower limb exoskeleton 
rehabilitation. 

 
 Index Terms - Machine learning, surface  EMG signal, active 
rehabilitation training 
 

I.  INTRODUCTION 

Social progress and the rapid development of science and 
technology make people's living standards continue to 
improve, the average life expectancy is becoming longer and 
longer, followed by the human society slowly into the aging 
stage. Along with the increase in the elderly population, the 
number of patients with chronic diseases is also on the rise. 
Stroke is highly disabling, and the most common dysfunction 
is the decline of motor function. Within 1 week after the onset 
of the disease, 13% ~ 86% of patients have one limb paralysis, 
73% ~ 77% of patients have difficulty walking, which 
significantly reduces people's quality of life[1]. Motor 
dysfunction after stroke due to the damage of the central 
nervous system, the motor system lost the control of the upper 
center, resulting in the release of the originally inhibited lower 
motor neurons, the performance of the side limb muscle tone 

abnormalities, muscle strength decline, coordination disorders 
between muscle groups, movement disorders. 

Lower limb exoskeleton robot can provide auxiliary power 
for human walking, especially for the elderly or people with 
gait disorders. One of the key problems in rehabilitation 
exoskeleton control is to predict the appropriate rehabilitation 
trajectory for the wearer[2]. Predefined trajectories are usually 
pre-recorded from healthy people, or inferred from gait 
analysis data profiles, and played back on the exoskeleton. 
However, most pre-recorded gait trajectories are usually 
irrelevant to the wearer, and in fact it is not appropriate to 
impose an exoskeleton gait that is irrelevant to the wearer's 
gait profile. Even if the exoskeleton gait helps the wearer 
walk, it is not the best and appropriate gait for the wearer. 
Lower limb amputation can not only affect the body's 
mobility, but also affect the body's health status after 
amputation. Lower limb amputation often causes the amputee 
walking gait is not normal, and the abnormal gait is easy to 
cause sports injury[3]-[4]. For example, patients with 
unilateral thigh amputation use crutches to walk with the 
healthy leg after healing. Due to the asymmetry of body 
weight, the whole body weight of patients is often borne by 
the healthy limb, which will lead to the injury of the healthy 
bone and joint, thus further worsening the mobility of 
amputees. In addition, the stump is subjected to the force of 
the prosthesis receiving cavity for a long time, which is easy 
to cause the skin and muscle injury of the wearing site, 
resulting in infection and deterioration of the condition of the 
amputation site. 

In order to solve the shortcomings of traditional 
rehabilitation training, a rehabilitation training system with 
various rehabilitation training modes, accurate and effective 
control strategies, and rich biological information and 
feedback signals is needed. The lower limb rehabilitation 
robot can well meet these conditions. The lower limb 
rehabilitation robot can set up appropriate rehabilitation 
training methods one on one according to the actual situation 
of patients, provide different schemes for the whole cycle, and 
do a good job in data recording and patient status 
monitoring[5]. At the same time, the combination of virtual 
technology greatly improves the awareness of patients' active 



participation in the process of rehabilitation training and the 
interest of practice. 

The research of rehabilitation robot began in the 1960s at 
the earliest. Through continuous development and research, its 
structure design, control strategy and multi-information fusion 
technology have been greatly improved and enhanced. The 
United States, Germany, Japan, Israel and other countries are 
leading the world. The most prominent example is an 
exoskeleton-assisted robot developed in a laboratory at the 
University of Tsukuba in Japan[6]. HAL is a wearable 
exoskeleton robot developed by the University of Tsukuba in 
Japan for therapeutic and nursing purposes. In addition, the 
robot system is equipped with an active drive device 
composed of a harmonic reducer and a DC motor in the hip 
joint, knee joint and ankle joint, as well as a surface EMG 
sensor and a surface reaction force sensor[7]. HAL has a bio-
conscious control mode, which uses surface EMG sensors to 
determine the body's motion intentions and thus controls the 
lower extremity exoskeleton to move according to the user's 
intentions, and an autonomous control mode, which uses 
ground reaction forces sensors placed under the foot. 
Combined with the motion intention judgment algorithm 
based on the change of the user's center of gravity, the 
exoskeleton movement is controlled. 

The following is a collation of this article. The second part 
introduces the principle and characteristics of experimental 
platform and surface EMG signals. The third part is the 
preprocessing and feature extraction of surface EMG signals. 
The fourth part is action classification based on LSTM neural 
network. The last part is experiment and conclusion. 

 
II.  SURFACE EMG SIGNAL ACQUISITION 

A.  Principle of  surface EMG signal generation 
Surface EMG signal is an extremely weak bioelectrical 

signal, but it contains a lot of motor information closely 
related to human activities. It is generated because muscles are 
stimulated by external information and respond to contraction 
under stress, and electrical signals are generated[8]. The 
signals are transmitted to the nerve center of the brain through 
nerve fibers, and the nerve center captures the signals and 
feeds back to the muscle to control the behavior of the muscle. 

Electromyographic signal is the electrical signal generated 
by external stimulation of muscles, which brings impulse 
through nerve endings. After amplification and transmission 
by acetylcholine, the electromyographic signal is transmitted 
to muscle joints, forming muscle impulse, stimulating muscle 
contraction and completing corresponding actions,as shown 
in Fig. 1. It has been proved by relevant studies that sEMG 
signals are generated 30ms-50ms before the limbs perform 
relevant movements. Therefore, sEMG is widely used in the 
fields of medical rehabilitation and robot control to predict 
people's motion intentions. 

 
Fig. 1 Schematic diagram of action potential generation 

 
B.  Choice of target muscle 

Human lower limb movement not only needs the support of 
bone joints, but also needs various muscles to cooperate with 
each other to provide power for movement. The joint activity 
of lower limb transmits nerve signals to the corresponding 
muscle movement through the cerebral cortex and the central 
nervous system, and then the movement is realized by the 
contraction of the skeletal muscle of lower limb. The 
movement of lower limb joints is mainly coordinated and 
controlled by four muscle groups, which are: the front thigh 
muscle group, the back thigh muscle group, the front calf 
muscle group and the back calf muscle group. The purpose of 
this study is to study the sEMG signals of each muscle during 
single joint movement and gait movement and to apply them 
to intention recognition and joint Angle prediction. The above 
four muscle groups were fully considered in the collection of 
lower limb sEMG signals, so four important muscles were 
selected for signal collection and research, namely, rectus 
femoris, biceps femoris, tibialis anterior and gastrocnemius[9], 
as shown in Fig. 2. 

 
Fig. 2 Distribution diagram of muscles in lower limbs 

 
C.  Acquisition of EMG signals 

The EMG acquisition equipment selected in this paper is the 
surface EMG instrument of Anhui Aili Intelligent 
Technology , which mainly includes EMG acquisition 
instrument, wireless connector, synchronizer, dual-channel 
EMG cable, electrode, etc, as shown in the Fig. 3. The 
electromyograph supports the simultaneous acquisition of four 
channels. Each channel adopts a dual-channel 



electromyographic cable, which can simultaneously collect the 
electromyographic signals of eight muscles at a sampling 
frequency of 1000Hz[10]. Combined with the supporting 
upper computer software, the measurement template can be 
developed for each patient, and the preliminary preprocessing 
function of the surface EMG signal can be completed to 
suppress the common frequency interference, and a variety of 
data analysis of the surface EMG signal can be done at the 
same time. 

 
Fig. 3 Surface EMG acquisition system 

 
The subjects in this experiment did not do strenuous 

exercise before collection. They cleaned the skin surface at the 
location of relevant muscles with alcohol to remove surface 
impurities[11]. Each muscle is collected by three motors, 
namely, the positive electrode, the negative electrode and the 
reference electrode, which are pasted around the two target 
muscles according to the position indicated on the upper 
computer software. In order to collect single joint motion data, 
6 kinds of experimental movements were designed, which 
were sitting and standing hook, sitting and standing leg lift, 
front kick, front lift, back kick and back lift. During the 
experiment, the motion should be kept at a constant speed, and 
each motion cycle should be kept at about 3s. In the training 
process, take the ankle rotating outward as an example to 
collect the surface EMG signals.  

 

III.  SURFACE EMG SIGNAL PROCESSING 

A.  Filtering processing of surface EMG signal 
In the surface EMG signal acquisition experiment, the 

surface EMG signal will be interfered due to the changes of 
the tester and the experimental environment. Since the 
amplitude of surface EMG signal is weak, the addition of 
noise will greatly affect the subsequent surface EMG signal 
analysis results. The filtering method in this paper is 
Butterworth filtering method, which mainly realizes 
Butterworth filtering of surface EMG signal through 
MATLAB software. The formula of Butterworth low-pass 
filtering is as follows:  
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In the formula, Ω is the filtering order, 𝛺𝛺𝑐𝑐 is the cut-off 
frequency, so that the main frequency of the surface EMG 
signal is concentrated between 50-350HZ. Whenε = 1 , the 
Butterworth bandpass filter attenuates to 3dB at the 
frequency𝛺𝛺𝑐𝑐, and N is the system order. 

Use Butterworth band-pass filter to de-noise the collected 
original signal. During the training, take the ankle outward as 
an example, the collected surface EMG signal can be seen that 
the waveform of the signal after processing in the time domain 
is smoother, the noise and burr are significantly reduced, and 
most of the original surface EMG signal is retained, as shown 
in Fig.4.In the frequency domain, the noise below 50Hz and 
high-frequency noise are effectively eliminated, as shown in 
Fig.5.Which is conducive to the subsequent feature extraction 
and action classification. 

 
Fig. 4 Time domain comparison before and after EMG filtering 

 
Fig. 5 Comparison of frequency domain of surface EMG signal before and 

after filtering 
 

B.  Selection of features 
Feature extraction is to further select the features that play a 

key role in the classification effect, so as to reduce the training 
time, enhance the generalization ability of the model and 

(a) frequency before filtering of electromyographic signals 

(b) frequency of electromyographic signal 
 



prevent the training over-fitting. In this paper, the sliding 
window method is used to extract the features of surface EMG 
signals. The selection of window length is particularly 
important, which directly affects the accuracy of classification. 
In this paper, 90ms data window length is selected, and each 
move is 40ms, that is, 50ms overlap time, for feature 
extraction[12]. In this paper, four eigenvalues, wavelength, 
variance, root mean square and absolute mean, are selected for 
analysis. 

The absolute mean value represents the average value of the 
surface EMG signal within a certain time, Nrepresents the 
length of the sliding window, and represents the surface EMG 
amplitude of the ith sampling point.  

𝑀𝑀𝑀𝑀𝑀𝑀 =
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Variance represents the degree of change of surface EMG 

signal intensity with time, and reflects the intensity of muscle 
movement. 
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Wavelength reflects the cumulative length of surface EMG 

signal in a certain time. 
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According to the above expression, four eigenvalues of 

surface EMG signal can be obtained. In the process of 
training, take the outward rotation of the ankle as an example 
to extract the features of the collected surface EMG signal, as 
shown in Fig. 6. 

 

 
Fig. 6 Surface EMG signal feature extraction results 

 

IV. INTENT  RECOGNITION ALGORITHM BASED ON LSTM 

A.  Control strategy 
Surface EMG can directly reflect the state of muscle 

contraction with high degree of information, so the strategy 

adopted in the experiment is to imitate the gait of the healthy 
leg, use the surface EMG signal to monitor the joint motion 
information of the healthy leg in real time, extract the 
characteristics of the surface EMG signal, train the appropriate 
classification model, decode the movement intention of the 
healthy side, make the affected side follow the walking gait of 
the healthy side, and automatically adjust the stride and step 
frequency of the affected side, The affected side can sense the 
movement intention of the healthy side and adjust its 
movement by sensing the ground conditions. 

During the data collection, the subjects were required to 
complete each action with the maximum force possible, and 
the experimental actions were performed in the order of 
kicking, squatting and lifting[13]. At the beginning of the 
experiment, the subjects were required to keep each action for 
5s, and perform each action five times. In order to avoid the 
muscle fatigue caused by the subjects' three actions for a long 
time, when each action is repeated, the action interval shall be 
kept at a rest state of 5s. 
B.  Principle and implementation of LSTM neural network 

The intention recognition based on surface EMG can help 
the exoskeleton control system to identify different motion 
modes, and to realize the flexible motion following of the 
lower limb exoskeleton control system, accurate prediction of 
each joint angle is also required. 

As shown in Fig.7,LSTM is a kind of time-cycle neural 
network, which has the ability of memory and can process and 
recognize long-distance dependencies. Its main advantage is 
that it can process extremely complex data sequences, and can 
learn long-distance correlation without the problem of gradient 
disappearing or exploding. LSTM network is composed of 
four parts: input gate, forgetting gate, output gate and unit 
state. LSTM network can be trained by back propagation to 
enable it to learn long-distance dependence[14]. 

 
Fig. 7 Schematic diagram of LSTM neural network 

 
Each module of LSTM has a memory unit to store the time 

𝑐𝑐𝑡𝑡 of t, and the output ℎ𝑡𝑡 of the module is as follows: 
  ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 tanℎ(𝑐𝑐𝑡𝑡) (5) 
Where 𝑜𝑜𝑡𝑡 is the input gate that adjusts the current input 𝑥𝑥𝑡𝑡 

and the pre-neuron information ℎ𝑡𝑡−1, and its output gate can 
be calculated by the following formula: 

  𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑜𝑜ℎ𝑡𝑡−1 + 𝑉𝑉𝑜𝑜𝑐𝑐𝑡𝑡) (6) 
Where σ  is the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  function, which outputs a value 

between 0 and 1 to describe how much data can pass through 
each part. 𝑉𝑉𝑜𝑜 is a diagonal matrix representing the amount of 



intermediate computation required to compute the output 
control. 

The state information of memory unit 𝑐𝑐𝑡𝑡  is updated by 
forgetting part of memory unit and adding a new memory unit 
𝑐̃𝑐𝑡𝑡. 

  𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡𝑐̃𝑐𝑡𝑡 (7) 
The new memory unit is calculated as: 
  𝑐̃𝑐𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑐𝑐ℎ𝑡𝑡−1) (8) 
The content of the memory unit is adjusted by the forgetting 

gate 𝑓𝑓𝑡𝑡 , and the degree to which the content of the new 
memory unit is added to the memory unit is adjusted by the 
input gate 𝑖𝑖𝑖𝑖, whose calculation formula is 

  𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑓𝑓ℎ𝑡𝑡−1 + 𝑉𝑉𝑓𝑓𝑐𝑐𝑡𝑡−1� (9) 
  𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑖𝑖ℎ𝑡𝑡−1 + 𝑉𝑉𝑖𝑖𝑐𝑐𝑡𝑡−1) (10) 
Where, 𝑉𝑉𝑓𝑓 and 𝑉𝑉𝑖𝑖  are diagonal matrices, representing the 

intermediate computation amount of computational oblivion 
control and input control, without special meaning. 
C.  Experiments and results 

In order to verify the rationality of the designed control 
method and combine it with the established experimental 
platform to verify the accuracy of the above control method, 
this experiment selected 5 healthy young men as the subjects. 
The experimental steps are as follows: 
1. Subjects wear lower extremity exoskeleton, and establish 

communication between electromyography acquisition 
device, STM32 control board and upper computer. 

2. Wash the skin of the subject's humerus with alcohol, and 
apply the electrode patch according to the standard 
collection position indicated by the electromyography 
collection software. 

3. The trained network parameters were loaded into Matlab, 
the classification program was run, and the exoskeleton 
was controlled to drive the subjects to walk. 

In the experimental scheme, 5 subjects with healthy limbs 
were invited to wear the exoskeleton structure on their left leg, 
and the surface EMG signal on their right leg was used as the 
control signal, and 9 groups of pre-set actions were carried out 
in cycles. The experiment is shown in Fig.8. 

 
Fig. 8 Rehabilitation training wearing effect picture 

 
According to the time-domain feature extraction results of 

outward rotation of the ankle, root mean square was selected 
as the input of the LSTM model to record the accuracy of the 
results. The expected trajectories of the measured leg joints 

and the actual leg motion trajectories are shown in the Fig. 9 
and Fig.10. 

 

 
(a) expected trajectory diagram   (b) actual motion trajectory diagram 

Fig. 9 Expected trajectory and actual motion trajectory diagram 

 
 

 
 
 
Fig. 10 Expected trajectory and actual trajectory error comparison diagram 

 
Further analysis of the experimental results shows that the 

exoskeleton can drive the subjects' legs to carry out 
rehabilitation training, and the movement curve is gentle, 
basically consistent with the expected Angle, and the 
rehabilitation effect is good, which proves the effectiveness of 
the lower limb exoskeleton system proposed in this paper 
based on the healthy side the surface EMG signals control, and 
the RMSE is 5.3729. Compared with most current 
rehabilitation robots, the proposed method in this paper has 
better advantages in predicting lower limb motion. Analyzing 
models under different motion modes using root mean square 
as an indicator is more stable and accurate. Experiments have 
shown that using LSTM has higher stability and accuracy in 
predicting different motion modes. 

 

V. CONCLUSIONS 

This paper proposed an LSTM neural network prediction 
model based on surface electromyography signals. By 
collecting sEMG signals data and analyzing sEMG features, 
corresponding motion intention recognition and joint angle 

(a) expected trajectory and actual trajectory comparison diagram 

(b) error graph 



prediction algorithms were designed. The LSTM neural 
network were used for motion intention recognition training 
and recognition reliability analysis of joint motion. The results 
showed that the maximum RMSE of the prediction result was 
5.3729, which was idealized. Proved the feasibility of using 
the LSTM model to predict joint angles. The accuracy of bone 
joint motion prediction has been verified through experiments, 
shortening and avoiding motion lag, providing basic data for 
exoskeleton motion control.  
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